

«САДКО-М» - ДАЛЬНЕЙШЕЕ РАЗВИТИЕ СТАЦИОНАРНОЙ СЕРИЙНОЙ СИСТЕМЫ КОНТРОЛЯ, ДИАГНОСТИРОВАНИЯ И УПРАВЛЕНИЯ.

А.А. Лаврухин

Система «САДКО-М» развитием системы «САДКО», серийно является «ПромСервис» 3AO 2003 года представляющей собой c И автоматизированную систему контроля диагностики и управления (АСКДУ).

«САДКО» создавалась, прежде всего, как АСУ ТП, обогащенная функциями системы диагностики. В основу «САДКО» легли два самостоятельных решения, т.е. система появилась в результате объединения систем класса АСУ ТП, а также технологий и реализованных экспертной системе «ДИЭС», разработанной методик, производившейся в ЗАО «ПромСервис». В качестве основы системы была использована АСУ ТП, разработанная специалистами предприятия, и выполненная на базе SCADA системы TRACE MODE. Это позволяло говорить о соответствии функциональности системы всем требованиям, предъявляемым к современным автоматизированным системам управления. «САДКО» была реализована на базе контроллеров ICP DAS серий 7000 и 8000. Комплекс программного обеспечения был расширен за счет создания программного обеспечения, реализующего выполнение функций диагностики. В перечень используемых контроллеров был добавлен специально разработанный виброконтроллер ВК-1, который позволяет осуществлять непрерывный вибромониторинг оборудования. В этом составе система была сертифицирована в 2004 г в качестве программно-технического комплекса (ПТК) со следующими техническими характеристиками (см. Таб. 1).

Таблица 1. Основные технические характеристики «САДКО»

	Сигналы		:аемой : : : : :	заемой Бной Влияния ературы вздуха на	кмый модуль из контроллеров	
Наименование каналов ввода/вывода	На входе	На выходе	Предел допускаемой основной погрешности,	Предел допускаемой дополнительной погрешности от влияния изменения температуры окружающего воздуха на 10°C, %	Используемый модуль из состава контроллеров	
Каналы для измерений напряжения	-150150 MB -500500 MB	В единицах измеряемого датчиком физического параметра	± 0,1	0,05	I-7017 * (режим Norm/mode)	
ИК напряжения	-11 B -55 B -1010 B		± 0,1	0,25	I-7017* (режим Norm/mode)	
ИК тока	05 мА 420 мА 020 мА		± 0,3	0,15	I-7017 ** (режим Norm/mode)	

Каналы аналогового выхода	14 бит	05 B 010 B -55 B -1010 B	± 0,1	0,04	I-7024 *
Каналы аналогового выхода	14 бит	020 мА 420 мА	± 0,2	0,15	I-7024 *
Каналы СКЗ виброскорости и виброперемещения	-55 B	мм/ч	± 5	0,5	***
Каналы для измерений частоты	0100 кГц	В единицах измеряемого датчиком физического параметра	± 0,2	0,5	I-7080 *

Изначально система позиционировалась как комплексное решение задач автоматизации крупных, дорогостоящих объектов, особо важных с точки зрения технологии и обеспечения непрерывной работы производства. Предполагалось использование контроллерного оборудования фирмы ICP DAS и SCADA системы TraceMode.

Система предназначалась для проведения непрерывных диагностических измерений вибрации, температуры и технологических параметров при эксплуатации и выполняла следующие функции

- измерение параметров технического состояния
- состояния работы оборудования (включено/выключено)
- регистрация текущих значений диагностируемых параметров
- учёт времени работы контролируемых агрегатов
- передача данных измерений в диагностические или информационные системы предприятия
 - регистрация данных измерения
 - хранение данных измерения
 - отображение данных измерения оператору.
 - обработка данных:
 - ведение информации по уровню нормативным показателям
- автоматическое определение (рекомендации) дефектов, текущего технического состояния и нарушений технологического регламента;
- прогнозирование (расчетное теоретическое) времени выхода из строя диагностируемого узла для текущего технологического процесса;
- возможность определения состояния оборудования, без предварительного набора статистики нормально работающего оборудования;
- оценка состояния оборудования как единого целого с учетом взаимного влияния его узлов друг на друга и с разделением дефектов.
 - передача обработанных данных.
 - самодиагностика системы и ее составных частей.
- генерация отчетов о состоянии объекта в форме, пригодной для включения в автоматизированную систему управления ТОиР;

- контроль и фиксирование действий персонала по изменению параметров работы системы и контролируемого оборудования, за счет средств управления системы.

В качестве основных заказчиков рассматривались предприятия нефтегазового комплекса и металлургии. При этом предполагалось, что экономический эффект от внедрения «САДКО» достигается за счет следующих факторов:

- предотвращение аварийных выходов из строя оборудования;
- увеличение надёжности и ресурса оборудования;
- повышение безотказности и долговечности работы оборудования;
- прогнозирование остаточного ресурса оборудования;
- обслуживание оборудования по техническому состоянию.

Однако, маркетинговые исследования, проведенные в 2004 году привели к необходимости создания целого ряда модификаций системы, ставших, в последствии, самостоятельными комплексами, выпускаемыми в рамках бренда «САДКО».

На базе системы «САДКО» выполнены следующие системы и комплексы

- «САДКО-ВТК» и модификации («САДКО-ВТК», «САДКО-ВТК-001», «САДКО-ВТК-002»);
 - «САДКО-ВИБРО» и модификации («САДКО-ВИБРО-001»);
 - «САДКО» и модификации.

В таблице 2 приведены функциональные характеристики и способы применения комплексов всех типов.

Таблица 2. Комплексы «САДКО»

Наименован ие системы	Функции системы	Область применения
«САДКО- ВТК»	Вибрационный и температурный контроль вспомогательного оборудования, с возможностью его отключения при возникновении аварийной ситуации без организации автоматизированного рабочего места. Число измерительных каналов не более 8. Конструктивно выполняется в виде настенного шкафа. Доступна модификация для использования в сложных климатических условиях («САДКО-ВТК-001»), и модификация с заказным набором средств отображения значений контролируемых параметров («САДКО-ВТК-002»).	Вспомогательное оборудование промышленного предприятия
«САДКО- ВИБРО»	Функции «САДКО-ВТК» + возможность проведения диагностики. Число измерительных каналов 16- вибрации или температуры. Без организации автоматизированного рабочего места. Конструктивно выполняется в виде настенного шкафа. Доступна модификация с заказным набором средств отображения значений контролируемых параметров («САДКО-ВИБРО-001»).	Вспомога- тельное и основное оборудование промышленного предприятия
«САДКО»	АСУ ТП. Измерение контроль неограниченного кол-ва каналов, управление ТП, диагностика. Возможность создания распределенных систем. Организация автоматизированного рабочего места (мест). Сертифицирована.	Основное оборудование промышленного предприятия

Таким образом, комплексы отличаются между собой , прежде всего, функционально.

Далее, системы и комплексы претерпели еще целый ряд изменений, касающихся способов построения. Причиной внесения такого рода изменений послужило то обстоятельство, что на крупных предприятиях разных отраслей промышленности сформированы собственные требования к АСУ, внедряемым на этих предприятиях. Как правило, эти требования выполнены в виде стандартов предприятий и неукоснительно соблюдаются. Таким образом, была поставлена задача, привести системы «САДКО» в соответствие к настоящим и предполагаемым требованиям заказчиков, относящихся к наиболее перспективным отраслям промышленности.

Решение этой задачи привело к созданию ряда модификаций самой системы «САДКО». Изменения, внесенные в конструкцию систем, коснулись как способа исполнения аппаратной части — за счет использования контроллерного оборудования других производителей и создания системы во взрывобезопасном исполнении, так и способа реализации программного обеспечения — за счет использования дополнительного набора SCADA систем.

На сегодняшний день поставляется три основных модификации системы «САДКО»(см. таб.3)

Таблица 3. Модификации «САДКО»

Наименование	Используемый набор оборудования и	Область
системы	программного обеспечения.	применения
«САДКО-ТМ»	SCADA система Trace Mode Контроллерное оборудование – ICP DAS, Advantech, Fastwell.	Металлургия, ЖКХ
«САДКО-СМ»	SCADA система Win CC Контроллерное и исполнительное оборудование – Siemens. Доступно взрывобезопасное исполнение.	Химическая и нефтехимическая промышленность. Металлургия
«САДКО-Т»	SCADA система MasterSCADA Контроллерное оборудование –Текон. Доступно взрывобезопасное исполнение.	Энергетика, нефтедобывающи е предприятия.

Обилие вариантов исполнения и модификаций «САДКО» уже в настоящее время, а также появление все новых и новых средств автоматизации, привело к переосмыслению концепции «САДКО» и, как следствие, созданию и сертификации системы «САДКО-М» (см. таб.4).

Принципиально, «САДКО-М» измеряет те же самые величины, что и система «САДКО», но не имеет привязки к конкретному типу контроллерного оборудования и программных средств, применяемых при ее создании. Заявленные погрешности позволяют использовать большинство современных средств автоматизации, поставляемых ведущими производителями, а отсутствие привязки к конкретному типу контроллеров позволяет использовать действующие и общедоступные мет методики поверки измерительных каналов системы, применительно к каналам измерения технологических параметров.

Помимо расширения номенклатуры покупных изделий изменения коснулись также и изделий производства ЗАО «ПроСервис».В состав «САДКО-М» входит обновленный виброконтроллер ВК-1, исправлен ряд ошибок в программном обеспечении системы, учтены некоторые пожелания пользователей систем. Внесен ряд изменений методического

плана. Решена задача совместимости систем «САДКО-М» с уже существующими на предприятии системами на уровне оборудования и программного обеспечения, что, в свою очередь, позволяет заказчику не проводить специальное обучение обслуживающего персонала и не хранить отдельный набор запасных частей и материалов. За счет наличия совместимости систем за низком уровне, системы «САДКО-М» легко встраиваются в системы АСУП и ТОИР действующих на предприятиях.

Таблица 4. Основные технические характеристики «САДКО-М»

Наименование каналов ввода/вывода	Сигналы		Предел допускаемой	Предел допускаемой дополнительной погрешности от	
	На входе	На выходе	основной погрешности, %	влияния изменения температуры окружающего воздуха на 10°C, %	
ИК напряжения	-150150 мВ -500500 мВ	В единицах измеряемого датчиком физического параметра	± 0,3	0,06	
	-11 B -55 B -1010 B	В единицах измеряемого иком физического парам	± 0,4	0,25	
ИК тока	05 мА 420 мА 020 мА	В еди	± 0,3	0,15	
ИК частоты	0100 кГц	В единицах измеряемог о датчиком физическог о параметра	± 0,2	0,5	
ИК СКЗ виброскорости и виброперемещения	-55 B	мм/с мкм	± 5	0,5	
Каналы аналогового выхода (напряжение)	14 бит	05 B 010 B -55 B -1010 B	± 0,2	0,04	
Каналы аналогового выхода (ток)	14 бит	020 мА 420 мА	± 0,3	0,15	

Еще одним немаловажным новшеством является то, что на ряду с набором сигналов, приведенных в таблице 4 системы «САДКО-М» могут использовать, в качестве входных сигналов, информацию, поступающую по каналам различных интерфейсов(RS-

232, RS-485, Ethernet). Что обеспечивает возможность получения результатов измерений с таких устройств как тепловычислитель или электросчетчик, предполагая, что эти устройства являются источником первичных сигналов, наряду с датчиками, входящими в состав систем.

В дальнейшем планируется расширение номенклатуры поставляемых систем за счет систем, выполненных с использованием оборудования Shneider Electric и Rockwell.

Характеристики надежности системы остались прежними: температурный диапазон рабочих температур расширен до области -40° C - $+85^{\circ}$ C, межповерочный интервал «САДКО-М» - 2 года, гарантийный срок увеличен до 3 лет,.

Безусловно, каждая внедряемая АСУ(АСКДУ) имеет свои особенности, которые невозможно учесть в одном, универсальном для всех систем наборе документации. Но, тем не менее, описав основные характеристики и общие требования к поставляемым системам, можно определить общие для всех систем части, а всевозможные нюансы их построения определить проектом.

Несмотря на универсальность «САДКО-М», в случае обоснованного требования заказчика любой экземпляр «САДКО-М» может быть сертифицирован как единичное средство измерения.

Таким образом, «САДКО-М» является гибким и универсальным семейством систем, способным решать задачи автоматизации и диагностики любого масштаба.

Лаврухин Андрей Александрович, начальник производства АСКДУ ЗАО «ПромСервис», г. Димитровград, Т/ф (84235) 2-18-07, 4-58-32, 6-69-26. promservis@promservis.ru , www.promservis.ru