РАСХОДОМЕР ПИТАТЕЛЬНОЙ ВОДЫ ДЛЯ АЭС

С.Н. Ещенко, А.Ю. Ефремов, О.Г. Пиядов

Введение.

Задача снижения неопределенности расчета мощности ядерного реактора Атомной Электростанции (АЭС) является актуальной в связи с возможностью повышения мощности реактора на несколько процентов при сохранении вероятности безопасной работы. Поскольку расчет тепловой мощности ядерного реактора проводят по тепловому контуру, в котором вырабатывается водяной пар, проблема снижения неопределенности расчета мощности сводится к погрешности определения массового расхода питательной воды в контуре. Выполненная экспертная оценка вклада точности измерения объемного расхода питательной воды в точность расчета тепловой мощности реактора БН-600 по параметрам петель третьего контура дает такие результаты (рисунок 1).

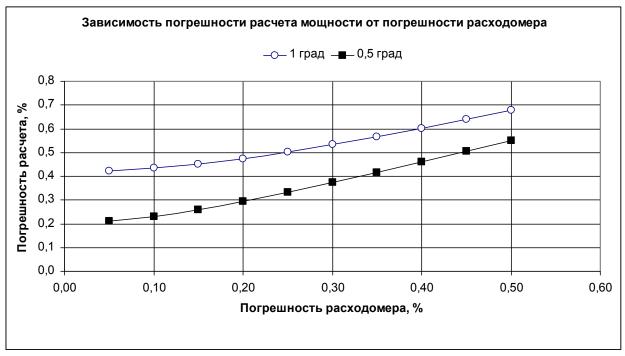


Рис. 1. Погрешность расчета тепловой мощности реактора.

В качестве параметра - точность измерения температуры теплоносителя в теплофикационном контуре АЭС.

Штатными средствами измерения расхода питательной воды являются расходомеры, работающие на методе переменного перепада давления, на стандартных сужающих устройствах. В рабочих условиях измерения относительная погрешность определения массового расхода питательной воды может составлять 3 процента и больше в достаточно узком динамическом диапазоне измерения. Поэтому обеспечение снижения указанной погрешности до уровня 0.5 процентов приводит к значимому экономическому эффекту.

Понимая актуальность задачи, руководство Белоярской АЭС (БАЭС) сформулировало ряд технических требований к расходомеру питательной воды высокой точности.

- 1. Характеристика измеряемой среды:
- рабочая среда: питательная вода по CO 153-34.20.501-2003;
- рабочие параметры питательной воды третьего контура энергоблока БН-600:
 - Паспортные регистрационные: $P_{pa6} = 179 \text{ k}\Gamma \text{c/cm}^2$, $T_{pa6.1} = 260 \text{°C}$.

 $P_{pa6} = 179 \text{ } \kappa \Gamma \text{c/cm}^2, \quad T_{pa6.2} = 160 \text{ }^{\circ}\text{C}.$

Расход питательной воды, м³/ч : от 20 до 500

2. Характеристика трубопровода:

материал: сталь 15 ГС;

- наружный диаметр и толщина стенки, мм: Ø219x16;
 - 3. Выходной сигнал преобразователя:

Выходные сигналы преобразователя - линейно-изменяющийся ток $4 \div 20$ мА при сопротивлении нагрузки не более 500 Ом и цифровой эквивалент расхода по интерфейсу RS-485 с протоколом информационного обмена - шина MODBUS. Нулевому расходу соответствует 4 мА, расходу 500 м 3 /ч соответствует 20 мА.

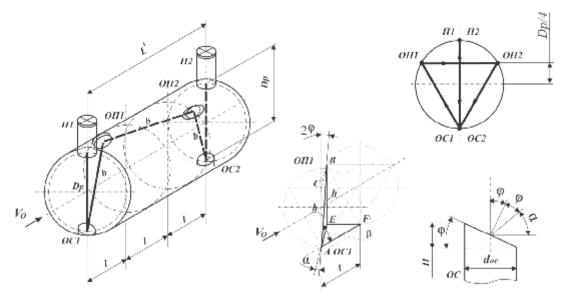
4. Конструктивные требования.

На корпус первичного преобразователя расходомера распространяются ПУБЭ АЭУ ПН АЭ Г-7-008-89, группа С, класс безопасности - 3НЗ по ОПБ-88/97. Класс безопасности вторичного преобразователя расходомера - 4Н. Категория сейсмостойкости трубопровода І по НП-031-01. Основные детали корпуса первичного преобразователя должны изготавливаться из материалов, указанных в ПУБЭ АЭУ или применение этих материалов должно быть допущено в соответствии с ПУБЭ АЭУ. Присоединение расходомера к трубопроводу должно быть на сварке. Разделка кромок корпуса расходомера под сварку с трубой Ø219x16, тип шва 1-24-2 (C-24-2) ПН АЭ Г-7-009-89.

5. Требования к метрологическому обеспечению:

Расходомеры должны быть внесены в ГОСРЕЕСТР средств измерений РФ.

Должна быть сертифицированная методика калибровки, а, в случае необходимости, оборудование и аппаратура для бездемонтажной поверки на объекте (без демонтажа первичного преобразователя). Межповерочный интервал при бездемонтажной методике должен составлять 1 год.


Предел допускаемой относительной погрешности измерения объемного расхода в диапазоне 270-500 м 3 /ч при давлении 100-179 кГс/см 2 и температурах от 160 до 260°C при первичной поверке должен быть $\pm 0.5\%$ и может быть определен расчетным способом.

При бездемонтажной поверке в условиях эксплуатации относительная погрешность не более $\pm 1,0\%$.

Разработка расходомера.

В основе работы расходомера лежит ультразвуковой, времяпролетный метод, использующий зондирование в направлении потока контролируемой среды и против него.

Зондирование ультразвуковыми импульсными колебаниями осуществляется с помощью двух обратимых, приемопередающих пъезопреобразователей, двух скошенных отражателей и двух плоских отражателей по пространственной "зигзагообразной" траектории. Вид "зигзагообразной" траектории, а также основные расчетные соотношения в зависимости от геометрии проточной полости приведены на рисунке 2.

П1, П2 - первый и второй пьезопреобразователи;

ОС1, ОС2 - отражатели скошенные;

ОП1, ОП2- отражатели плоские

Рис. 2. Проточная полость и траектория зондирования.

Траектория зондирования состоит из пяти лучей, два из которых – пассивные, перпендикулярные вектору осредненной скорости потока V_O , а остальные три луча образуют с ней угол В. В первых двух лучах не происходит процесса измерения скорости потока: вектор скорости звука ортогонален вектору скорости потока. Три из пяти лучей, в которых осуществляется измерение, представляют собой наклонные среднерадиусные хорды: проекции на поперечное сечение проточной полости пересекают точку $D_p/4$. Особенность такой траектории при измерении - на порядок более слабая зависимость от профиля скоростей по сравнению с наклонным диаметром, изменения гидродинамического коэффициента во всем промышленном диапазоне чисел Re (для нашего случая значения чисел Re лежат в диапазоне от 0,21 $\cdot 10^6$ до 7,4 $\cdot 10^6$) не превышают $\pm 0,5$ %.

В рамках требований заказчика об использовании материала корпуса расходомера, совпадающего с материалом трубопроводов теплофикационного контура, расходомера выполнен из поковки из стали марки 15ГС и имеет измерительную и присоединительные части. Поскольку требования к измерительному участку расходомера содержат положение об исключении любых разъемных соединений, наружная поверхность измерительной части ПП20 выполняется в виде шестигранника, на стороны которого волноводы и отражатели, с помощью сварки. Внутренний цилиндрического канала соответствует диаметру условного прохода 200 мм. Общий вид корпуса расходомера приведен на рисунке 3.

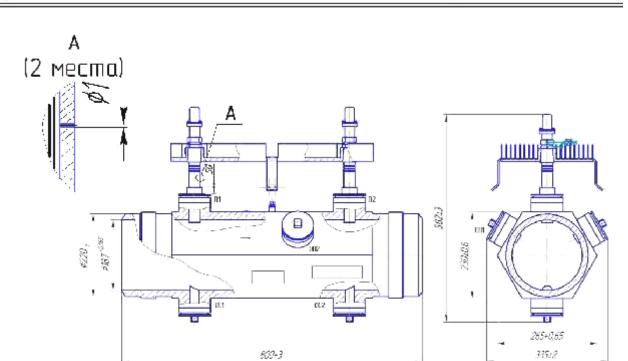


Рис. 3. Корпус первичного преобразователя расходомера «ПРАМЕР-517Р».

качестве чувствительного элемента пъезопреобразователя пъезоактивный материал АРС-850 в виде дисков диаметром 20 мм и толщиной 1.5 мм. Поскольку рабочая температура измеряемой среды (260 °C) значительно превышает максимальную рабочую температуру пъезоматериала (160°C), проведен комплекс работ по преодолению этой технической трудности. Решение было найдено в виде использования специального дистанцирующего устройства - волновода, обеспечивающего 2 функции: тепловую развязку пъезокерамики от высокотемпературной среды, находящейся под высоким давлением, и доставку без искажения зондирующих ультразвуковых колебаний от пъезопреобразователя через слой теплоизоляции и корпус расходомера в проточную часть и обратно. Внешний вид волновода приведен на рисунке 4. Волноводный канал (волновод) представляет собой полый цилиндр из стали марки 15ГС, с размещенными внутри тягами из проволоки, волновод снабжен посадочными местами для радиатора и пьезопреобразователя. поверхность цилиндра снабжена тремя кольцевыми предотвращения распространения УЗК по корпусу волновода (путь "короткого замыкания").

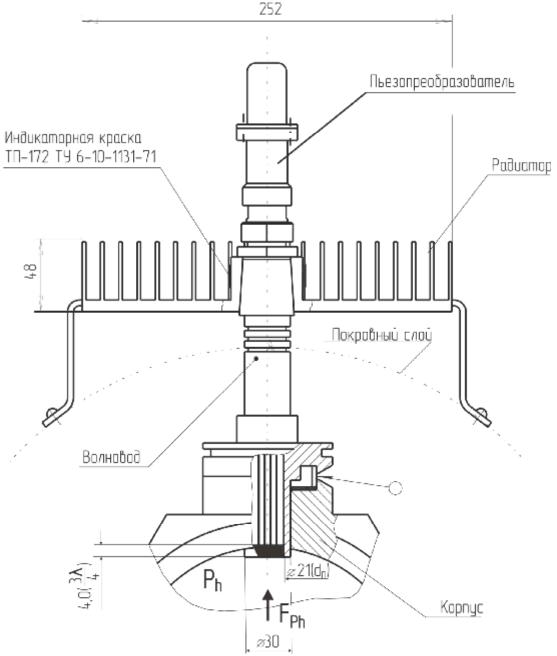


Рис. 4.Узел крепления волновода к корпусу расходомера.

Алюминиевый радиатор, смонтированный на конусную часть волновода, обеспечивает дополнительное рассеивание тепла для снижения температуры наружной стороны волновода до заданного уровня с целью обеспечения долговременной работы пъезоматериала и сохранению акустического контакта между поверхностями волновода и пъезопреобразователя.

Тепловой контакт радиаторов с волноводами осуществляется через слой той же смазки, которая обладает повышенной стойкостью к температуре и теплопроводностью.

Ориентация лучей УЗК в проточной полости осуществляется с помощью скошенных ОС1 и ОС2 и плоских ОП1 и ОП2 отражателей, располагаемых в плоскостях поперечного Отражатели и волноводы присоединяются к корпусу на сварке после предварительной юстировки их пространственного положения.

Конструкция пьезопреобразователей – съемная, позволяющая производить их замену, в случае необходимости, при эксплуатации.

Электронный блок вторичного преобразователя предназначен для измерений временных интервалов, вычислений объемного расхода в рабочем режиме и по алгоритмам имитации расхода, а также преобразования расхода в токовый и цифровой сигналы.

Алгоритмы измерения и обработки ультразвуковых колебаний содержат ряд уникальных технических решений и обеспечивают, в комплексе с первичным преобразователем, заданные значения по точности и диапазону измерения объемного расхода при высоких значениях давления и температуры питательной воды.

Конструктивно электронный блок вторичного преобразователя выполнен в немагнитном металлическом корпусе из алюминиевого материала, имеющего два крепежных элемента для установки на стену.

Для передачи возбуждающих и приемных ультразвуковых (УЗ) сигналов от первичного преобразователя к электронному блоку применяется кабель связи КС.

Внешний вид электронного блока вторичного прибора расходомера приведен на рисунке 5.

Изготовление расходомеров.

Поскольку класс безопасности первичного преобразователя в технических требованиях определен как 3H3, то изготовление расходомеров по разработанной конструкторской документации мы вели в соответствии с «требованиями, предъявляемыми к поставке Продукции, относящейся к важным для безопасности элементам ОИАЭ 1,2 и 3 классов безопасности».

Требования включают в себя целый комплекс мероприятий, обеспечивающих на выходе из производства должный уровень качества продукции.

Все перечислять не имеет смысла, но для примера, можно остановиться на основных требованиях.

В рамках требований был подготовлен и согласован с заказчиком план качества, который включает все этапы производства и приемки изготовленной продукции.

Заказчиком была назначена уполномоченная организация, обеспечивающая проведение контроля качества (оценка соответствия в форме приемки), которая на основании анализа состояния конструкторской документации и состояния предприятия-изготовителя (оборудование, обученный персонал, технологии) выдавала разрешение на начало изготовления продукции.

Поставщики и материалы подвергались контролю с точки зрения наличия сертификационных документов, разрешающих использование материалов в изделиях для AЭC.

Была разработана и аттестована в Ростехнадзоре технология сварки элементов корпуса расходомера, а также согласовано использование методов контроля качества швов.

В соответствии с требованиями, был изготовлен головной образец расходомера, который подвергся приемочным испытаниям с участием уполномоченной организации и представителей заказчика.

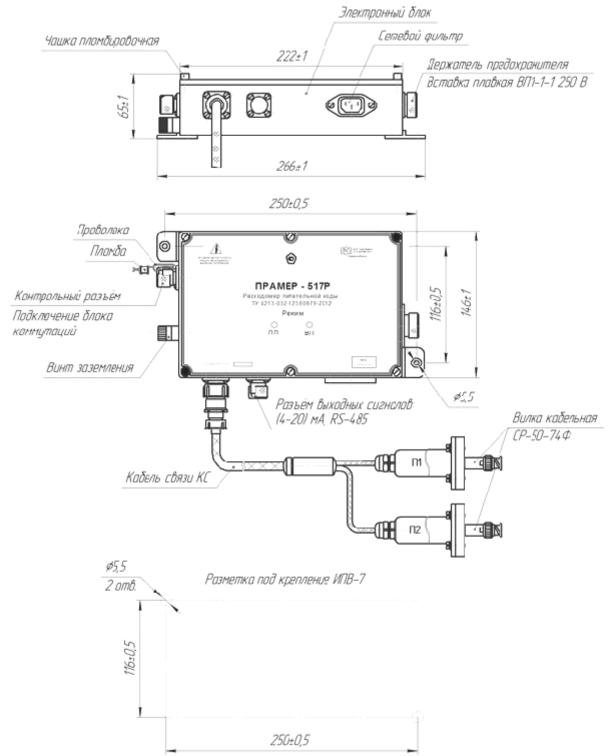


Рис. 5. Габаритно-присоединительные размеры и внешний вид вторичного прибора расходомера.

Ну и наконец, проводился всесторонний поэтапный выходной контроль и приемка всей партии расходомеров. В качестве иллюстрации на рисунках 6 а) и б) приведены таблицы контроля из комплекта конструкторской документации.

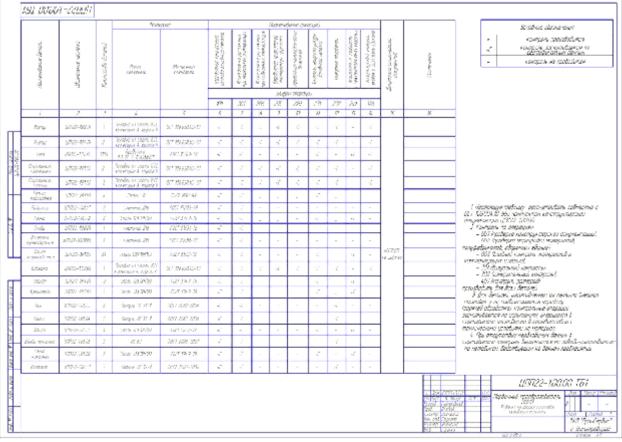


Рис. 6а.

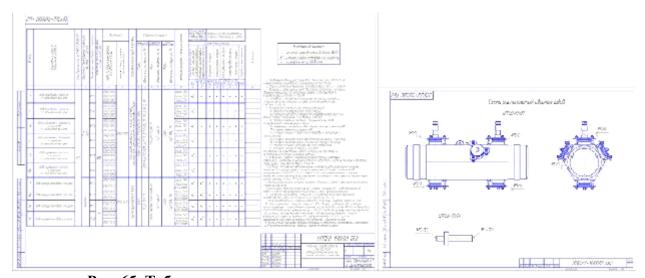


Рис. 6б. Таблицы видов контроля при изготовлении расходомера

Все этапы работы по изготовлению были успешно пройдены, в результате чего изготовлена и принята ограниченная партия расходомеров питательной воды «ПРАМЕР-517Р», которая была поставлена заказчику на БАЭС. Внешний вид расходомера представлен на рисунке 7.

Рис. 7. Расходомер «ПРАМЕР-517Р»

Метрологические вопросы.

Разрабатываемые расходомеры имеют две отличительные особенности:

- теплофизические параметры измеряемой воды: наибольшая температура составляет 260° C, наибольшее давление – 18 МПа (180 кгс/см²);
- практическая невозможность демонтажа первичного преобразователя для периодической поверки (присоединение на месте эксплуатации - на сварке силовым).

С учетом максимального измеряемого расхода воды 500 куб.м/ч и указанных особенностей не существует возможности градуировать и поверять расходомер на известных горячеводных стендах. Поэтому за основу взят подход, который включает в себя следующие шаги.

Градуировка и поверка расходомеров на поверочной установке соответствующего класса с температурой воды 25±5°C, экспериментальное определение поправочных коэффициентов для приведения измеренных значений расхода к рабочим параметрам среды, разработка метода и аппаратуры для имитационного способа поверки на месте эксплуатации.

В рабочем диапазоне расходов установлены следующие режимы функционирования расходомера:

- с рабочей температурой среды T_{раб.1} = 260 °C (533 К) и рабочим давлением $P_{pa6.1} = 17.9 \text{ M}\Pi a;$
- с рабочей температурой среды $T_{pa6.2} = 160 \, ^{\circ}\text{C} (433 \, \text{K})$ и рабочим давлением $P_{pa6.1} = 17.9 \text{ M}\Pi a;$

При проведении бездемонтажной поверки на АЭС гарантируется следующий режим: - остановленная циркуляция потока при полном заполнении проточной полости первичного преобразователя питательной водой с рабочей температурой в пределах от 145 до 160 °C (от 418 до 433 К) и рабочим давлением в пределах от 9,75 до 10,25 МПа.

При проведении первичной поверки и периодических поверок расходомеры имеют функцию автоматического определения рабочих режимов на основе анализа теплофизических величин:

- скорости звука в измеряемой среде;
- коэффициента расширения корпуса первичного преобразователя (обобщенный термобарический коэффициент).

При экспериментальных исследованиях выполнялись следующие работы:

- определение геометрических параметров первичных преобразователей расходомеров в соответствии с Методикой поверки 4213-032-12560879 МП;
- определение влияния движущейся воды на амплитуду и форму приемных ультразвуковых сигналов в рабочем диапазоне расходов;
- градуировка (по ГСССД 117-88) и определение относительной погрешности расходомера по функции измерения скорости звука при атмосферном давлении в диапазоне температур 0 90°C:
- градуировка и определение относительной погрешности расходомера при измерении расхода на холодной воде;
- определение влияния температуры и давления контролируемой среды на амплитуду и форму приемных ультразвуковых сигналов;
- определение температуры области волновода в месте присоединения к нему пьезоэлектрического преобразователя при рабочих параметрах расходомера;
- определение влияния температуры и давления на изменение относительной погрешности расходомера при имитации расхода в рабочих условиях;
- определение термобарических коэффициентов для теплофизических параметров воды при рабочих параметрах.

В процессе термобарических исследований, поочерёдно каждый из образцов первичного преобразователя расходомера с установленными фланцами-заглушками, предварительно заполненный дистиллированной водой, помещали в полость термобарического стенда. Стенд обеспечивал задание требуемых значений давления и температуры внутри корпуса первичного преобразователя. При этом расходомер работал в штатном режиме на нулевом расходе и фиксировал все необходимые параметры при изменении давления и температуры воды внутри расходомера. Так же контролировали температуру корпусов пъезопреобразователей с целью подтверждения эффективности работы волноводов и радиаторов.

В результате экспериментов установлено, что на амплитуду приемных ультразвуковых сигналов не оказывает существенного воздействия:

- движение измеряемой среды до осредненных скоростей 5,06 м/с;
- термобарическое воздействие в рабочем диапазоне от (20°C; 0,1МПа) до (260°C; 18МПа).

Измеренные значения скорости звука при повышенных температурах и давлениях близки к величинам, приведенным в литературных источниках и ГСССД 117-88. Абсолютная погрешность измерения скорости звука расходомером в диапазоне температур от 20 до 90° С не превышает ± 0.8 м/с, пределы относительной погрешности измерения $\pm 0.05\%$.

Экспериментально определенные значения изменения скорости звука в рабочих режимах среды позволяет расходомеру автоматически распознавать рабочую область и учитывать в формуле соответствующие термобарические коэффициенты.

Поверка расходомера на водяном стенде подтвердила метрологические характеристики, оговоренные в Технических Требованиях заказчика.

Фактическая температура в области акустического контакта в точке наибольших значений теплофизических параметров среды (260°C, 18 МПа) не превышала 55,5 °C, что существенно ниже расчетной температуры.

Поверка имитационным способом на трех образцах расходомера в пяти точках воздействующих термобарических параметров на имитируемых расходах 35, 100, 200, 270, 315 и 360 м³/ч показала:

- относительная погрешность при имитационной поверке не превышает ±0,06 %;
- экспериментально подтверждена возможность проведения поверки на неподвижной среде при температуре 150 °С и давлении 10,0 МПа.

Положительные результаты расчетно-экспериментальной работы легли в основу документов для проведения государственных испытаний расходомера с целью утверждения типа средства измерения. Свидетельство о внесении типа средства измерения в государственный реестр получено.

Некоторые результаты внедрения.

В настоящее время (март 2014 года) идет процесс поэтапного внедрения в эксплуатацию поставленных расходомеров, 2 из 6 отработали около года без замечаний, остальные планируется смонтировать во 2 квартале 2014 года.

По двум смонтированным расходомерам проведены пуско-наладочные работы, они введены в эксплуатацию и наряду со штатными средствами измерения расхода питательной воды (стандартные шайбы) используются для измерения расхода питательной воды одной из секций парогенератора. Расходомеры питательной воды «ПРАМЕР- 517Р» подтвердили свою прочность и плотность при рабочих параметрах среды, эффективность температурных развязок обеспечила ограничение температуры пъезопреобразователей на нужном уровне.

В качестве примера (рисунки 8, 9) можно привести записи показаний расходомеров «ПРАМЕР- 517Р» и штатных расходомеров третьего контура при номинальных и переходных режимах, когда температура и давление питательной воды изменялись.

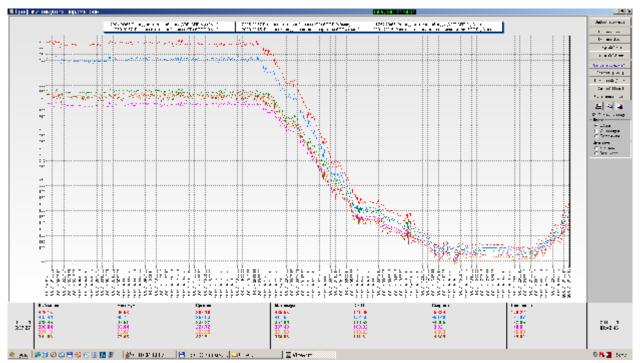


Рис. 8. Запись показаний расходомеров «Прамер 517Р» и штатных расходомеров.

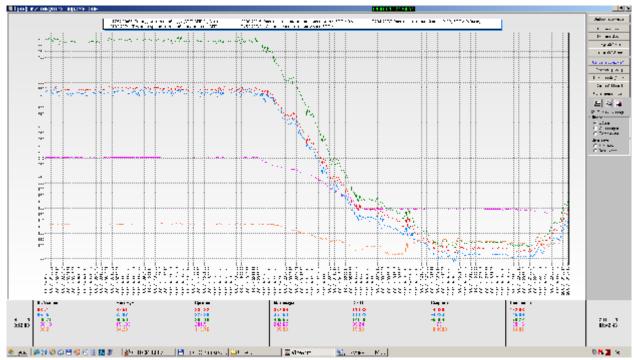


Рис. 9. Запись показаний расходомеров «Прамер-517Р», штатных расходомеров, значений давления и температуры в переходном режиме.

Заключение.

Впервые в России разработан ультразвуковой расходомер питательной воды высокой точности теплофикационного контура АЭС, предназначенный для работы на измеряемой среде с параметрами: температура – до 260°C, давление – до 18МПа.

Диаметр условного прохода измерительного канала расходомера – 200 мм.

Диапазон измеряемых расходов: от 20 м 3 /ч до 500 м 3 /ч с погрешностью $\pm 0.5\%$ (от 270 до 500 м 3 /ч) и ±1% (от 20 до 270 м 3 /ч).

Класс безопасности по ОПБ-88/97 – 3НЗ.

Изготовлена партия расходомеров и сдана заказчику.

В настоящее время идет поэтапное внедрение на БАЭС и эксплуатация расходомеров в штатном режиме.

Литература:

- 1. Технические условия ТУ 4213-032-12560879-2012.
- 2. Руководство по эксплуатации «Расходомеры питательной воды ПРАМЕР-517Р» 4213 -032-12560879 РЭ.

Ещенко Сергей Николаевич,

к.т.н., технический директор ЗАО «ПромСервис»,

Пиядов Олег Геннадьевич,

заместитель технического директора ЗАО «ПромСервис»,

Ефремов Алексей Юрьевич,

начальник ПТО ЗАО «ПромСервис».

ЗАО «Промсервис», РФ, 433502, Ульяновская обл.,

г. Димитровград, ул. 50 лет Октября, д. 112.

тел./факс: (84235) 4-18-07, 4-58-32, 6-69-26

E-mail: promservis@promservis.ru

www.promservis.ru.